
Buzzy Documentation
Release 0

Sebastian Pawluś

November 10, 2015

Contents

1 Install 3

2 Quick Start 5

3 Renderers 7

4 Settings 9

5 Commands 11

6 Why yield 13

7 Source Code 15

i

ii

Buzzy Documentation, Release 0

Low level static page generator, with simple API!

Why to use static sites generator?

There are many cases, when your website will be static and using dynamic pages framework like Django, Ruby on
Rails, Flask, Sinatra would be a bit of overhead.

Why to write yet another static website generator?

Not really sure, yet!

Contents 1

Buzzy Documentation, Release 0

2 Contents

CHAPTER 1

Install

Buzzy currently runs only Python 2.7.x and earlier versions of Python are not supported and Python 3 was not tested
yet.

You can install it from PyPi, by simply pip:

$ pip install buzzy

A recommended approach would be to create a virtual environment for buzzy project via virtualenv before installing
it.

3

Buzzy Documentation, Release 0

4 Chapter 1. Install

CHAPTER 2

Quick Start

Create a regular python file, copy paste the content presented below.

import buzzy

class StaticSite(buzzy.Base):

@buzzy.register
def thing(self):

yield buzzy.render.content("Hello world", "index.html")

if __name__ == "__main__":
StaticSite()

Each render function created with buzzy needs to be decorated with register. This way buzzy will know which method
in class should be called during the build process.

$ python project.py build
2014-03-01 20:54:55,599 - StaticSite - INFO - build generated

Now you should have content inside your build directory, which will be called _build.

$ ls _build
index.html

$ cat _build/index.html
Hello world

You should see there one file index.html, and the content of this file will be ‘Hello world’.

$ python project.py server
2014-03-01 20:54:55,599 - StaticSite - INFO - build generated
2014-03-01 20:54:55,600 - StaticSite - INFO - serving at port 8000

Go to your browser to http://127.0.0.1:8000/, done!

5

http://127.0.0.1:8000/

Buzzy Documentation, Release 0

6 Chapter 2. Quick Start

CHAPTER 3

Renderers

buzzy.render.content(content, target_file)
A renderer class to create a file from a content.

Parameters

• content – content to put inside he file

• target_file – name of the destination file

@buzzy.register
def view(self):

yield buzzy.render.content("index.html", "hello world")

buzzy.render.template(template, target_file, **context)
A renderer class to render file from a template. jinja2 package is required

Parameters

• template – jinja2 template located in the TEMPLATE_DIR

• target_file – name of the destination file

• **context – as many named parameters as needed, all will be put as a context inside the
template

@buzzy.register
def view(self):

yield buzzy.render.template("index.html", "index.tpl", text="hello world")

buzzy.render.markdown(source, target_file)
A renderer class to render file from a markdown markup. markdown package is required

Parameters

• target_file – name of the destination file

• source – for source of the markup file

@buzzy.register
def view(self):

yield buzzy.render.markdown("index.html", "index.md")

7

Buzzy Documentation, Release 0

8 Chapter 3. Renderers

CHAPTER 4

Settings

• BUILD_DIR, default = ‘_build’

Build directory, where static page will be generated after executing build method.

• INCLUDE, default = []

List of files and directories that will be copy over to the build directory without any modifications.

• TEMPLATES_DIR, default = ‘templates’

Templates directory, jinja2 base template directory used with render.template.

• SERVER_PORT, default = ‘8000’

Developer server port, from which will page will be server after executing server method.

• WATCH_EXCLUDE, default = [’.git*’, ‘.hg*’, ‘*.orig’]

List of files to be excluded from watch process. When watch command is called, the build directory will
be reload every time when page got changed. This setting prevents from calling rebuild for some files. The
BUILD_DIR is will be excluded as well.

9

Buzzy Documentation, Release 0

10 Chapter 4. Settings

CHAPTER 5

Commands

• build

Regenerates the content inside BUILD_DIR

• server

Runs developemnt server. It will watch development directory, if files inside will get changed it will trigger
build command.

• Custom command

By using @buzzy.command decorator you can register your own command

@buzzy.command
def mycommand(self):

deploy_site()

$ python project.py mycommand

11

Buzzy Documentation, Release 0

12 Chapter 5. Commands

CHAPTER 6

Why yield

There are three main reasons why to use yield here:

• yield is cool, and is overly underrated as python mechanism,

• render function may call yield many times, which means that one function may generate more than one file,

• yield is memory efficient, we are operating here on file contents in memory, yield will reduce some pain here.

13

Buzzy Documentation, Release 0

14 Chapter 6. Why yield

CHAPTER 7

Source Code

https://github.com/xando/buzzy

15

https://github.com/xando/buzzy

Buzzy Documentation, Release 0

16 Chapter 7. Source Code

Index

B
buzzy.render.content() (built-in function), 7
buzzy.render.markdown() (built-in function), 7
buzzy.render.template() (built-in function), 7

17

	Install
	Quick Start
	Renderers
	Settings
	Commands
	Why yield
	Source Code

